Chapter 11. Neurotoxin-Induced Autoimmune-Mediated Neurological Damage in Autism

Chapter 11. Neurotoxin-Induced Autoimmune-Mediated Neurological Damage in Autism

Akinrinade ID et al., 2015. Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure. Pathophysiology. 22(1):39-48. doi: 10.1016/j.pathophys.2014.12.001.

Arain MS et al., 2015. Correlation of aluminum and manganese concentration in scalp hair samples of patients having neurological disorders. Environ Monit Assess. 187(2):10. doi: 10.1007/s10661-014-4172-0.

Arndt TL et al., 2005. The teratology of autism. Int J Dev Neurosci. 23(2-3):189-99.

Authier FJ et al., 2001. Central nervous system disease in patients with macrophagic myofasciitis. Brain. 124(Pt 5):974-83.

Avella-Garcia CB et al., 2016. Acetaminophen use in pregnancy and neurodevelopment: attention function and autism spectrum symptoms. Int J Epidemiol. Jun 28. pii: dyw115.

Bhattacharjee S et al., 2013. Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD). J Inorg Biochem. 126:35-7. doi: 10.1016/j.jinorgbio.2013.05.007.

Bishop NJ, et al., 1997. Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. 336(22):1557-61.

Bondy SC et al., 2014. Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology. 315:1-7. doi: 10.1016/j.tox.2013.10.008.

Bondy SC. 2015. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology. 52:222-229. doi: 10.1016/j.neuro.2015.12.002.

Burbacher TM et al. 2005. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect 113:1015–1021

Campbell A. 2002. The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant. 17 Suppl 2:17-20.

Campbell A et al., 2004. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res. 75(4):565-72.

Canales JJ et al., 2001. Aluminum impairs the glutamate-nitric oxide-cGMP pathway in cultured neurons and in rat brain in vivo: molecular mechanisms and implications for neuropathology. Journal of Inorganic Biochemistry. 87(1-2):63-69.

Charleston JS et al., 1996. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neurotoxicology 17(1):127-38.

Charleston JS et al., 1995. Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol Appl Pharmacol. 132(2):325-33.

Conciatori M et al.,2004. Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol. Psychiatry 55 (4): 413–9.

Couette et al., 2009. Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem. 103(11):1571-8. doi: 10.1016/j.jinorgbio.2009.08.005.

Di Curzio DL et al., 2013. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol. 248:112-28. doi: 10.1016/j.expneurol.2013.06.004.

El-Rhaman SS, 2003. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol. Res. 47(3):189-94.

Eskes C et al., 2002. Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia. 37(1):43-52.

Exley C et al., 2014. Elevated brain aluminium and early onset Alzheimer’s disease in an individual occupationally exposed to aluminium: a case report. J Med Case Rep.8:41. doi: 10.1186/1752-1947-8-41.

Exley C et al., 2014. Aluminium adjuvants and adverse events in sub-cutaneous allergy immunotherapy. Allergy Asthma Clin Immunol. 10(1):4. doi: 10.1186/1710-1492-10-4.

Exley, C. 2014. Why industry propaganda and political interference cannot disguise the inevitable role played by human exposure to aluminum in neurodegenerative diseases, including Alzheimer’s. Disease Front Neurol. 5: 212.

Flarend R et al., 1997. In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine. 15(12-13):1314-8.

Flaten TP, 2001. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull. 55(2):187-96.

Fujimura M et al., 2009. Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology. 30(6):1000-7. doi: 10.1016/j.neuro.2009.08.001.

Gajkowska B et al., 1992. Ultrastructural alterations of brain cortex in rat following intraperitoneal administration of mercuric chloride. J Hirnforsch. 33(4-5):471-6.

Gherardi RK et al., 2001. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 124(Pt 9):1821-31.

Gupta SK, et al., 1986. Absorption and disposition of aluminium in the rat. J Pharm Sci. 75:586–589.

Han S et al., 2013. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol. 29(2):75-84. doi: 10.1007/s10565-013-9239-0.

Ingram JL et al., 2000. Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology. 62(6):393-405.

Jensen-Jarolim, E. 2015. Aluminium in allergies and allergen immunotherapy. World Allergy Organ J. 8(1): 7.

Karakis I et al., 2014. Association between prenatal exposure to metals and neonatal morbidity. J Toxicol Environ Health A. 77(21):1281-4. doi: 10.1080/15287394.2014.932313.

Kawahara M et al., 2001. Effects of aluminum on the neurotoxicty of primary cultured neurons and on the aggregation of beta-amyloid protein. Brain Res. Bull. 55:211-217.

Kern JK et al., 2012. Evidence of parallels between mercury intoxication and the brain pathology in autism. Acta Neurobiol Exp (Wars). 72(2):113-53.

Krewski D et al., 2007. Human health risk assessment for aluminium, aluminium oxide and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 10 Suppl 1:1-269.

Kumamaru E 2014. Valproic acid selectively suppresses the formation of inhibitory synapses in cultured cortical neurons. Neurosci Lett. 569:142-7. doi: 10.1016/j.neulet.2014.03.066.

Kyoung-Jin Min et al., 2004. Protein kinase A mediates microglial activation induced by plasminogen and gangliosides. Experimental & Molecular Medicine 36: 461–467; doi:10.1038/emm.2004.58

Le Houézec D et al., 2014. Evolution of multiple sclerosis in France since the beginning of hepatitis B vaccination. Immunol Res. 60(2-3):219-25. doi: 10.1007/s12026-014-8574-4.

Lemire J et al., 2009. Aluminum-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. J Neurosci Res.;87(6):1474-83. doi: 10.1002/jnr.21965.

Li XB et al., 2009. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine. 5(4):473-9. doi: 10.1016/j.nano.2009.01.013.

Luján L et al., 2013. Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep. Immunol Res. 56(2-3):317-24. doi: 10.1007/s12026-013-8404-0.

Meiri H et al., 1991. Aluminum ingestion–is it related to dementia? Rev Environ Health. 9(4):191-205.

Minami T et al., 2010. Induction of metallothionein in mouse cerebellum and cerebrum with low-dose Thimerosal injection. Cell Biol Toxicol. 26(2):143-52. doi: 10.1007/s10565-009-9124-z.

Miyazaki K et al., 2005. Maternal administration of thalidomide or valproic acid causes abnormal serotonergic neurons in the offspring: implication for pathogenesis of autism. Int J Dev Neurosci. 23(2-3):287-97.

Monnet-Tschudi F et al., 1996. Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cultures of rat telencephalon. Brain Res. 741(1-2):52-9.

Nayak P et al., 2001. Effects of aluminum exposure on brain glutamate and GABA systems: an experimental study in rats. 39(12):1285-9.

Nayak P et al., 2002. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition. BMC Neurosci. 28 3:12.

Ni M et al., 2011. Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia. 59(5):810-20. doi: 10.1002/glia.21153.

Olczak M, et al.,2009. Neonatal administration of a vaccine preservative, Thimerosal, produces lasting impairment of nociception and apparent activation of opioid system in rats. Brain Res 1301:143–151

Petrik MS et al., 2007. Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. Neuromolecular Med. 9(1):83-100.

Poddighe D et al., 2014. A sudden onset of a pseudo-neurological syndrome after HPV-16/18 AS04-adjuvated vaccine: might it be an autoimmune/inflammatory syndrome induced by adjuvants (ASIA) presenting as a somatoform disorder? Immunol Res. 60(2-3):236-46. doi: 10.1007/s12026-014-8575-3.

Polizzi S et al., 2002. Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology. 23(6):761-74.

Pohl HR et al., 2011. Metal ions affecting the neurological system. Met Ions Life Sci. 8:247-62.

Piyasirisilp S et al.,2002. Neurological adverse events associated with vaccination. Curr Opin Neurol. 15(3):333-8.

Project TENDR, 2016. Targeting Environmental Neuro-Developmental Risks. The TENDR Consensus Statement. Environmental Health Perspectives 124:A118-122/

Qvarnstro¨m J et al.,2003. Determination of methylmercury, ethylmercury and inorganic mercury in mouse tissues, following administration of Thimerosal, by species-specific isotope dilution GC-inductively coupled plasma-MS. Anal Chem 75:4120–4124.

Redhead K, et al., 1992. Aluminum-adjuvanted vaccines transiently increase aluminum levels in murine brain tissue. Pharmacol.Toxico. 70:278-280.

Roda E et al., 2008. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat. J Chem Neuroanat. 35(3):285-94. doi: 10.1016/j.jchemneu.2008.01.003.

Rodier, PM et al., 1996. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J.Comp.Neurol., 370:247-261.

Rodier PM 2003. Converging evidence for brain stem injury in autism. Dev. Psychopathol. 14 (3): 537–57.

Rodrigues JL et al., 2010. Identification and distribution of mercury species in rat tissues following administration of Thimerosal or methylmercury. Arch Toxicol 84:891–896

Roider G, Drasch G. 1999. Concentration of aluminium in human tissues – investigations on an occupationally non-exposed population in Southern Bavaria (Germany). Trace Elem Electrolytes 16:77–86.

Rossignol DA et al., 2014. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014 4:e360. doi: 10.1038/tp.2014.4.

Sakamoto M et al. 2008. Possible involvement of cathepsin B released by microglia in methylmercury-induced cerebellar pathological changes in the adult rat. Neurosci Lett. 442(3):292–6.

Savory J et al., 2006. Mechanisms of aluminum-induced neurodegeneration in animals: Implications for Alzheimer’s disease. J Alzheimers Dis. 10(2-3):135-44.

Shaw CA et al., 2013. Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes. J Inorg Biochem. 128:237-44. doi: 10.1016/j.jinorgbio.2013.07.022.

Shaw CA et al., 2014. Aluminum-induced entropy in biological systems: implications for neurological disease. J Toxicol. 491316. doi: 10.1155/2014/491316.

Shoenfeld Y et al., 2011. ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 36(1):4-8. doi: 10.1016/j.jaut.2010.07.003.

Snow WM et al., 2008. Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev Psychobiol. 50(7):633-9.

Stevanović ID et al., 2011. N-nitro-L-arginine methyl ester influence on aluminium toxicity in the brain. Folia Neuropathol. 49(3):219-29.

Sullivan NR et al., 2004. Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells. J Neurochem. 90(5):1269-75.

Tamburo E et al., 2015. Trace elements in scalp hair samples from patients with relapsing-remitting multiple sclerosis. PLoS One. 10(4):e0122142. doi: 10.1371/journal.pone.0122142.

Thomas Curtis J et al., 2011. Chronic inorganic mercury exposure induces sex-specific changes in central TNFα expression: importance in autism? Neurosci Lett504(1):40-4. doi: 10.1016/j.neulet.2011.08.053.

Uno, Y et al., 2015. Early exposure to the combined measles-mumps-rubella vaccine and Thimerosal-containing vaccines and risk of autism spectrum disorder. Vaccine 33(21):2511-6. doi: 10.1016/j.vaccine.2014.12.036.

Verdier F, 2005.  Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminium containing vaccines in the Cynomolgus monkey. Vaccine. 23:1359–1367.

Willhite CC et al., 2014. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol. 44 Suppl 4:1-80. doi: 10.3109/10408444.2014.934439.

Yokel RA, O’Callaghan JP. 1998. An aluminium-induced increase in GFAP is attenuated by some chelators. Neurotoxicol Teratol 20: 55-60.

Yokel, R.A. 2012. Aluminum in food – The nature and contribution of food additives. In: Yehia El-Samragy (ed), Food Additive, InTech, ISBN 978-953-51-0067-6, 2012, pp. 203-228.

Zhang L et al., 2014. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology. 323:95-108. doi: 10.1016/j.tox.2014.06.011.